
White Paper: 7x24 solutions for Oracle enterprises DRAFT 1
Softstart Services Inc. (12/23/98)

-RE6FKHGXOHU�IRU

2UDFOH

u�[���VROXWLRQV�IRU

WKH

2UDFOH�HQWHUSULVHv

White Paper: 7x24 solutions for Oracle enterprises DRAFT 2
Softstart Services Inc. (12/23/98)

7KH %XVLQHVV 3UREOHP

Evolution of Oracle enterprises
From its roots as a decision-support database tool, Oracle has evolved to be the relational
database of choice for everything from data warehouses to mission critical systems. Oracle
may now be found in use underlying systems as diverse as those in Table 1:

Airline reservations Sales force automation
Decision support Customer service
Data warehouses Call center operations
Accounting Customer databases
ERP Web site content management
Medical records Electronic commerce
Data mining

Table 1: Uses of Oracle

Originally, these systems were developed in-house, but more recently third-party vendors
have modified their applications to use Oracle as their standard repository. Perhaps the
clearest sign of this is ERP vendors like SAP and Peoplesoft competing with Oracle’s own
applications product, all running against the Oracle database.

Need for “batch” jobs
In redeveloping their applications for client-server environments, some vendors took the
high road by rearchitecting for a real-time environment. Typically however, the reality of a
capacity constrained hardware and network environment has forced them to use some sort
of batch or non real-time methodology.

Other vendors merely ported their mainframe applications to a client-server environment
and assumed the presence of some sort of batch or job scheduling mechanism similar to
that available on mainframes.

Most organization recognize that maximizing ROI on expensive hardware requires off-
hours utilization for at least house-keeping tasks, and perhaps more such as long-running
reports. In a similar fashion (but perhaps without as many hard analysis) it is clear that
automating manual tasks performed by programmers, operations staff, or financial analysts
is at least as important as better hardware utilization, and probably leads to greater
productivity and job satisfaction. Typically this has led to the recognition of the “batch
window” during which batch jobs can or should be run, and simultaneously a realization of
the trend towards shrinking this batch window.

White Paper: 7x24 solutions for Oracle enterprises DRAFT 3
Softstart Services Inc. (12/23/98)

As the number of packaged or third-party applications has increased, so has the need for
cross-application tools which make sure processes or jobs from disparate systems work
together (for example, by ensuring that the General Ledger Posting does not run before all
relevant AP transactions have been processed for the day.

Job Scheduling Requirements
Although the title may be different in different organizations, it typically falls to an
operations or production control manager to reconcile the conflicting job requirements
presented above. In many newer organizations this role may fall by default to the systems
administrator, or even the DBA. Initial attempts to handle this may use manual scheduling,
use of Unix cron, or “vanilla” schedulers included in 3rd party packages (which typically
work well only for jobs from those packages).

With some experience, the operations manager will recognize the following as basic
requirements for any job scheduling system. Not surprisingly, many of these mirror the
needs of traditional mainframe schedulers.

Basic requirements

Oracle Repository-based
This is a fundamental requirement for any Oracle-based enterprise. DBAs or system
administrators want to be able to monitor, analyze, and report on job activity. Although
built-in reports may provide some of this functionality, standard Oracle tools can tie
together the job scheduling component with other in-house developed tools.

Ability to automate jobs from multiple applications
Job schedulers must be able to run jobs from multiple applications and environments,
without requiring any change to the program being run. Changes are not only undesirable
but also may be impossible in the case of a 3rd-party application. This in turn implies the
requirement to:

• pass an unlimited parameters of arbitrary type
• read input from a file in place of terminal or command-line input
• transparently run script-type files (such as SQL or PL/SQL scripts) through a pre-

processor

Need to run jobs or groups of jobs in a specified order
Efficient use of a shrinking “batch window” demands that jobs be run in parallel wherever
possible. At the same time, some jobs require the output or results of previous jobs and so
must be run sequentially. Taken together, these needs imply the ability to run job

White Paper: 7x24 solutions for Oracle enterprises DRAFT 4
Softstart Services Inc. (12/23/98)

“streams” (also called sets, batches or schedules) where some jobs are parallel and others
are sequential as illustrated in Figure 1.

Calendaring or “time-and-date” scheduling
Jobs and job streams typically execute on a calendar which mirrors the business calendar.
For example, the monthly closing of the books entails running postings, reconciliations,
and reports, and finally the close itself. Calendar specifications allow building basic “every
Monday” type calendars, as well as more complicated custom calendars. Calendars also
need to include running jobs at multiple times or intervals on calendar dates.

Ad hoc scheduling
The power of a job scheduler, and the control it brings to resource utilization can also be
extended to ad hoc scheduling. In this environment, resource intensive jobs are
“scheduled” to run immediately, thus providing a compromise between real-time needs
and not overloading the system.

Job constraints and error handling
Obviously job streams do not always run successfully, either because of problems internal
to the job stream (such as a misconfiguration, bad parameters, or an executable program
having been misnamed or moved), or because of external problems (a required input file
not being available, or a previous job having nor been run). Job stream capabilities require
extensive constraint handling (also called dependencies or events). For example, a job to
load external AP records into the AP system should check that the external data file is
available before starting to run. Optionally, the job should fail if the file is not available
within a preset time limit. Other minimal constraints are based on the success or failure of
a previous job step, return codes, and time-or-date.

Advanced requirements
The Basic Requirements provide the minimal configuration to run jobs and replace any
manual job execution or scheduling system. However, to truly gain the benefit of a job
scheduling system and the accompanying automation, there is an additional level of
advanced requirements.

Fault tolerance and restart/recovery
Complicated schedules can quickly be rendered useless if a critical component, system,
network, or database is unavailable during execution time. Fault-tolerant capabilities
enable processing to continue at some minimal level during such interruptions, and for full
service to be restored as soon as possible.

The interruption of running jobs is only the most immediate problem from a system crash.
The flow on effects of schedule delays can lead to the night schedule ending without
critical jobs having been run. Consequently, recovery/restart logic tells the scheduler
which jobs are critical and which can safely be deferred.

White Paper: 7x24 solutions for Oracle enterprises DRAFT 5
Softstart Services Inc. (12/23/98)

Dynamic load balancing
If the maximum benefits of a scheduler are to be had by combining both calendar-
scheduled and ad hoc scheduling, there arises a danger of load spikes caused by resource-
hungry jobs being run during the day (or by users starting long-running eal-time jobs
running before leaving in the evening). Dynamic load balancing is essential to allow system
administrators to control the number and types of jobs running depending on system load,
to minimize disk bottlenecks and CPU “thrashing”.

Scheduling across multiple systems
Many open systems environments use multiple identical servers “clustered” together (in a
formal or informal fashion), often with shared disk storage. Not only does this provide for
some level of redundancy, but it also provides added parallelism when needed. An
advanced scheduler should allow such clusters to be treated as a single server for
scheduling purposes, so that jobs will run on the first available server, or the server with
the lowest load.

Sophisticated multi-level security
Although a job scheduler is a useful tool for just the operations manager, system
administrator, or DBA to use, it becomes even more powerful if jobs do not require
constant oversight. Much of the promise of open systems is the “opening of the glass-
house” and the exposure of capabilities to end users. A sophisticated job scheduler should
provide user-friendly features for defining and running jobs, all with appropriate security.
For example, accounting managers might be permitted to define accounting jobs,
accounting users might be able to submit them, but only operations personnel could
control the scheduler itself, including when and how those jobs run.

Parameter validation and automation
Effective use of a job scheduler by end-users requires user-friendly features such as
context-sensitive parameter validation and lookup lists. For example, an accounting user in
the ABC subsidiary might only be allowed to run reports for divisions within that
subsidiary, and so should be presented only with the relevant list of divisions when
submitting reports.

Output Management
Scheduling and running jobs without efficient output management is self-defeating. Jobs
can produce reams of output, and quickly fill up available disk space. Schedulers must
have sophisticated output management which:

• Allows online viewing of output. This ensures that users and operators can
preview reports to ensure they are correct before printing or distributing them

• Provides secure access to printers. An obvious example is that only certain users
running certain jobs should be allowed access to the check printer.

White Paper: 7x24 solutions for Oracle enterprises DRAFT 6
Softstart Services Inc. (12/23/98)

• Monitors printer status and can redirect jobs if a printer is down. You should be
able to define alternative printers (of the same type) that can handle a print job if
the designated printer is down.

• Manages disk space. Output files from old jobs must be aggressively purged or
archived according to criteria like age, size, print status and so on.

White Paper: 7x24 solutions for Oracle enterprises DRAFT 7
Softstart Services Inc. (12/23/98)

-RE6FKHGXOHU IRU 2UDFOH FDSDELOLWLHV

JobScheduler for Oracle was designed to provide both industrial-strength capabilities
previously found in mainframe schedulers, and also to leverage the benefits of open
systems architectures.

Basic requirements

Oracle Repository-based
JobScheduler for Oracle uses the Oracle database for storage of all objects, as well as
communication between Master and Agent Schedulers, ensuring a persistent store for all
job-related activities. JobScheduler provides standard Oracle reports for all important
scheduler objects (such as jobs, jobs streams, programs, and so on), as well as dynamic
queries such as failed jobs of certain types. However, because it is Oracle repository
based, DBAs can run their own ad hoc queries to interrogate the job database in their own
way.

Ability to automate jobs from multiple applications
JobScheduler for Oracle can run any job without change by simply registering the
executable program file and any number of parameters.

JobScheduler’s powerful program types enable you to predefine preprocessors and
parameters for commonly run jobs. For example, you can define SQL*Plus or PL/SQL
scripts as jobs using JobScheduler’s predefined SQL*Plus program type which
automatically logs into SQL*Plus and opens a spool file..

“Interactive” jobs can provide a special challenge, especially those that read input from the
command line. But JobScheduler’s Autofile Manager allows you to define an input file
that provides input commands to a job to replace the command line.

Need to run jobs or groups of jobs in a specified order
JobScheduler’s Job Streams give you complete control over the ordering and execution of
your jobs. Simple sequential job streams can be defined with one checkbox, and more
complex parallel or networked job streams can be defined with a combination of sequential
execution and job constraints. You can even build your job stream in a modular fashion
(allowing you to share job stream definitions) by nesting job streams to an unlimited depth.

Calendaring or “time-and-date” scheduling
JobScheduler for Oracle includes extensive calendaring. Not only can you share calendars
among different jobs and Job Streams, but calendars can be as simple as “Every Monday”
or as complicated as you like. And using Calendar Periods you can define jobs to run at
varying intervals, between arbitrary times on any date for the ultimate in sophistication.

White Paper: 7x24 solutions for Oracle enterprises DRAFT 8
Softstart Services Inc. (12/23/98)

Ad hoc scheduling
JobScheduler allows you to treat ad hoc jobs with any priority you define relative to
regularly scheduled jobs. You can define separate queues for ad hoc jobs to limit the
number or load, or time of day when they can be scheduled. And regularly scheduled jobs
can be changed to ad hoc jobs with a click of a button if they need to be run immediately.

Job constraints and error handling
JobScheduler’s job constraints are the core of running jobs and job streams. JobScheduler
provides six different types of constraint for fine-grained control of jobs:

• Job status: execution of following jobs can be based on the completion, success, or
failure of a previous job

• Job return code: provides greater control than status, with different job paths
depending on return code from a job

• Alarms: jobs will run if a previous job has raised an alarm because of its
completion status (allowing you to define generic error handlers for different types
of job failure)

• SQL conditions: let you specify that a job should run if a SQL condition is true or
false (for example, if needed data has been loaded into an interface table)

• Files: jobs can wait for a file to be transferred from another system (for example,
and interface file which then will be loaded into the database) or a file to be deleted
(for example, a lock file which indicates a backup is in progress)

• Calendars: for situations where the same job stream should run with minor
variations on a few days, you can define a single job stream and then include a
calendar constraint to run or not run a sub-job based on the particular day. For
example, the month-end close might run slightly differently at year end.

Furthermore, job constraints can be combined with if-and-or logic for complete flexibility
in job execution.

Advanced requirements

Fault tolerance and restart/recovery
JobScheduler’s advanced fault-tolerant features include:

• Master Auto-restart
• Database tolerance
• Hibernate mode

Auto-restart exploits JobScheduler’s advanced processor-independent client-server
architecture. In normal operation, the Master Scheduler provides a single point-of-control
for scheduling decisions, and then sends jobs to the appropriate Agent Scheduler for
execution on a local or remote system. If the central system should fail, thereby crashing

White Paper: 7x24 solutions for Oracle enterprises DRAFT 9
Softstart Services Inc. (12/23/98)

the Master Scheduler, all Agent Schedulers immediately recognize the problem. You
identify candidate Agent Schedulers, one of which “clones itself” and restarts the Master
Scheduler, with accompanying clean-up and recovery/restart logic for jobs that were
running at the time of failure. And the Master Scheduler even re-synchronizes itself with
whatever jobs are currently running on the Agents!

Database tolerance: Network dropouts are a fact of life, especially in widely-distributed
operations. But JobScheduler for Oracle allows for temporary interruptions in service.
Whether it’s a hardware failure or a SQL*Net problem, if JobScheduler for Oracle is
unable to access the Master Scheduler database, it continues normal operation (including
job execution, monitoring, and completion) while retrying the database at increasing
intervals. When normal service is restored, the Scheduler synchronizes the database with
its stored status.

Agent Scheduler Hibernate: If the database or database server should fail, you don’t
want to lose all your job execution information. With Database Tolerance, JobScheduler
for Oracle attempts reconnections at increasing intervals. You can specify a retry limit
after which JobScheduler for Oracle assumes the interruption is not a temporary network
interruption, but rather a more serious database problem. JobScheduler for Oracle writes
all its schedule information to a “hibernate file” and then shuts down gracefully. When the
database or network problem has been fixed, you can restart JobScheduler for Oracle
which rereads the hibernate file and resynchronizes the Master Scheduler database with it.
If you elect not to restart an Agent Scheduler on that system, you can still run a
synchronize utility to post the hibernate file to the database.

Dynamic load balancing
JobScheduler’s default behavior is to use static load balancing, which provides the
simplest way to get started running jobs. But if load spikes are a problem, or if you are
consistently maxing out your system, you can turn on dynamic load balancing. Use any
load variable you want; something as simple as the uptime load average, or more
complicated statistics from third-party tools like PATROL or Compuware. Define a job to
load profile in your queue definitions which “throttles down” queues as the load increases,
allowing you to reach a steady state and maximize the throughput. Of course, you can still
automatically or manually override load limits for running critical jobs.

Scheduling across multiple systems
JobScheduler’s powerful queue mechanism allows you to restrict programs to run on a
single scheduler (and thus in turn a single system), or to multiple systems in a cluster. And
even more importantly, JobScheduler can combine this capability with user restrictions on
who can run on which system for maximum security.

JobScheduler’s easy-to-read Control Center lets you see at a glance what the scheduler
and queue load is, and what is running where.

White Paper: 7x24 solutions for Oracle enterprises DRAFT 10
Softstart Services Inc. (12/23/98)

Sophisticated multi-level security
JobScheduler uses multiple security layers to ensure that you can control who can run
what jobs.

Oracle-user security restricts access to the Scheduler to acceptable Oracle users. You
can use the JobScheduler user profile to control how many jobs users can run
simultaneously, and the security groups to restrict users’ access to running specific jobs,
or using certain printers.

Menu-based security ensures that users only see the forms and screens that you specify;
the pre-programmed Admin, Super-User and User roles package the most common
features together.

Security levels control what functions users can access in a specific form. Six different
security levels, from User to Administrator, provide increasing capabilities, from being
able to submit and control only one’s own jobs, through to being able to control the whole
Scheduler.

Parameter validation and automation
JobScheduler gives you complete control over parameters to jobs, to minimize the
instances in which jobs run with incorrect parameters. You can specify:

• Type: (Character, Date, or Numeric)
• Display: Hidden, Read-Only, or Visible. For example, Read-Only parameters are

displayed in the job submission, but may not be changed by the user
• Min-Max validation
• Table-Column validation
• Mandatory/Optional
• Default

And JobScheduler allows you to reuse the parameters entered for a previous run (or
change selected ones) and resubmit the job.

Of course, automatic submission of jobs on a calendar is vastly preferable to manual
submission. But many programs’ parameters change depending on submission date or
other data. JobScheduler’s Automatic Parameters allow you to get the best of both
worlds! You define Automatic Parameters using SQL statements, which can even include
references to other Automatic Parameters.

A simple example is a report which you want to run with a parameters of the first day of
the current week. You can define an Automatic Parameter called First Day of Week
which uses a simple SQL statement to compute and pass the first day of the current week
whenever the job is run. You need never submit the job manually again; JobScheduler
correctly compute the parameters automatically whenever the job is run.

White Paper: 7x24 solutions for Oracle enterprises DRAFT 11
Softstart Services Inc. (12/23/98)

Output Management
JobScheduler’s output management features include:

• Printing instructions which can depend on job status (so that you don’t print
output from jobs which errored)

• Multiple online viewing techniques for users, ranging from a quick preview to a
more extensive “copy to local disk” option (perhaps as a precursor to loading into
a spreadsheet)

• Print styles which can be matched with printer types to ensure that the right output
goes to the right printer (no more sending HP Laserjet output to a Postscript
printer)

• Printer security integrated with security levels (which include lists of users and
allowable programs)

• Automatic print redirection if a printer is down
• DiskSentry output management and purging based on multiple criteria including

job status, print status, size, age, or manual selection

JobScheduler’s output management features ensure that you can always find the space to
run necessary jobs!

White Paper: 7x24 solutions for Oracle enterprises DRAFT 12
Softstart Services Inc. (12/23/98)

3URGXFW $UFKLWHFWXUH

As Figure 2 illustrates, JobScheduler for Oracle is architected in a portable, scalable
fashion.

Oracle repository
All job objects and information is stored in an Oracle repository which is constantly
updated to provide up-to-the-second status in the event of a system crash or interruption.
The Scheduler accesses the Oracle database intelligently and with minimal overhead,
reading and writing only for changes to job information.

Master and “light-weight” Agent
Each scheduling group consists of one Master Scheduler which maintains the schedules,
queue information, and job streams, and also runs jobs locally on its system. Jobs are
executed on other systems by light-weight “Agent” Schedulers which report job status
back to the Master Scheduler through a message queue implemented in the Oracle
database.

In the event of a schedule interruption such as a crash of the system running the Master
Scheduler, one of the Agent Schedulers can automatically “clone” itself as a Master
Scheduler to continue scheduling jobs with minimal interruption. And if Agent Schedulers
should shutdown, jobs can automatically be rerouted to alternative systems.

Schedulers written in “C”
Master and Agent Schedulers are written in “C” for maximum portability across any Unix
platform (99.9% of the code is unchanged during porting) or Windows NT, using Oracle-
standard Pro*C calls and stored procedures for database access.

Developer/2000 interface for consistency
JobScheduler’s Windows 95 interface is written in Developer/2000 for consistency and
ease of use with your internally developed Oracle systems. (A free runtime version of
Developer/2000 is available from Oracle for those who do not have the developer copy).

White Paper: 7x24 solutions for Oracle enterprises DRAFT 13
Softstart Services Inc. (12/23/98)

&RQFOXVLRQ

JobScheduler for Oracle provides industrial-strength job scheduling for Oracle
enterprises needing 7x24 solutions. Not only does it provide the basic job scheduling
capabilities that enterprises expect from their mainframe legacy, JobScheduler also delivers
advanced functions that significant improve throughput, performance, and ease of use.

